Membrane activities of colicin nuclease domains: analogies with antimicrobial peptides.

نویسندگان

  • Mireille Vankemmelbeke
  • Richard James
  • Christopher N Penfold
چکیده

Nuclease colicins, such as colicin E9, are a class of Escherichia coli bacteriocins that kill E. coli and closely related Gram-negative bacteria through nucleolytic action in the cytoplasm. In order to accomplish this, their cytotoxic domains require transportation across two sets of membranes and the periplasmic space. Currently, little information is available concerning how the membrane translocation processes are achieved, and the present review summarizes our recent results on the in vitro membrane activities of the colicin nuclease domains. Using model membranes, we have analysed the cytotoxic domains of a number of DNase-type colicins and one rRNase colicin for their bilayer insertion depth and for their ability to induce vesicle aggregation, lipid mixing and increased bilayer permeability. We found that, by analogy with AMPs (antimicrobial peptides), the interplay between charge and hydrophobic character of the nuclease domains governs their pleiotropic membrane activities and these results form the basis of ongoing work to unravel the molecular mechanisms underlying their membrane translocation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FtsH-dependent processing of RNase colicins D and E3 means that only the cytotoxic domains are imported into the cytoplasm.

It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing acti...

متن کامل

Interaction of Nuclease Colicins with Membranes: Insertion Depth Correlates with Bilayer Perturbation

BACKGROUND Protein transport across cellular membranes is an important aspect of toxin biology. Escherichia coli cell killing by nuclease colicins occurs through DNA (DNases) or RNA (RNases) hydrolysis and to this end their cytotoxic domains require transportation across two sets of membranes. In order to begin to unravel the molecular mechanisms underlying the membrane translocation of colicin...

متن کامل

Pathways of colicin import: utilization of BtuB, OmpF porin and the TolC drug-export protein.

Pathway I. Group A nuclease colicins parasitize and bind tightly (Kd ≤ 10(-9) M) to the vitamin B12 receptor on which they diffuse laterally in the OM (outer membrane) and use their long (≥100 Å; 1 Å=0.1 nm) receptor-binding domain as a 'fishing pole' to locate the OmpF porin channel for translocation. Crystal structures of OmpF imply that a disordered N-terminal segment of the colicin T-domain...

متن کامل

The role of electrostatics in colicin nuclease domain translocation into bacterial cells.

The mechanism(s) by which nuclease colicins translocate distinct cytotoxic enzymes (DNases, rRNases, and tRNases) to the cytoplasm of Escherichia coli is unknown. Previous in vitro investigations on isolated colicin nuclease domains have shown that they have a strong propensity to associate with anionic phospholipid vesicles, implying that electrostatic interactions with biological membranes pl...

متن کامل

Immunity protein release from a cell-bound nuclease colicin complex requires global conformational rearrangement

Nuclease colicins bind their target receptor BtuB in the outer membrane of sensitive Escherichia coli cells in the form of a high-affinity complex with their cognate immunity proteins. The release of the immunity protein from the colicin complex is a prerequisite for cell entry of the colicin and occurs via a process that is still relatively poorly understood. We have previously shown that an e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 40 6  شماره 

صفحات  -

تاریخ انتشار 2012